The Impact of Smoked Cannabis and Distraction on the Simulated Driving Behaviour of Young Recreational Cannabis Users

Christine M. Wickens, Robert E. Mann, Bruna Brands, Bernard LeFoll, Gina Stoduto, Justin Matheson, and Marilyn Huestis
Prevalence of cannabis use is highest amongst those aged 15 to 24 years.
Prevalence of cannabis use appears to have declined slightly from 2008 levels.
As of 2013, approximately 24% of this population reported using cannabis.
Percentage of Young Adult Drivers (Aged 18 to 29 Years) Reporting Driving a Motor Vehicle After Drinking Alcohol, and After Using Cannabis, 2013 CAMH Monitor

<table>
<thead>
<tr>
<th>%</th>
<th>Drinking and driving</th>
<th>Cannabis use and driving</th>
</tr>
</thead>
<tbody>
<tr>
<td>25%</td>
<td>(est. 130,158 drivers)</td>
<td>(est. 121,323 drivers)</td>
</tr>
<tr>
<td>20%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10%</td>
<td>8.9</td>
<td>8.3</td>
</tr>
<tr>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Percentage of Drivers in Grades 10–12 Reporting Driving a Motor Vehicle After Drinking Alcohol, and After Using Cannabis, 2015 OSDUHS

- Drinking and driving: 5.1% (est. 15,300 drivers)
- Cannabis use and driving: 9.8% (est. 29,500 drivers)
Impact of Cannabis Use on Driving

- Cannabis is the psychoactive drug most often found in seriously and fatally injured drivers after alcohol
 (Laumon et al., 2005; Stoduto et al, 1993; Woodall et al., 2015)

- Recent meta-analyses examining case-control and culpability studies have concluded that DUIC is associated with significant increases in collision risk (ORs=1.22 - 2.66)
 (Asbridge et al., 2012; Li et al., 2012; Rogeberg & Elvik, 2016)
Cannabis Legalization in Other Jurisdictions

- **Colorado**: Legalization and commercialization of medical cannabis led to an increase in the proportion of fatally-injured drivers who were cannabis-positive
 (Salomonsen-Sautel et al., 2014)

- **Washington State**: Following legalization of recreational cannabis use, the prevalence of active THC and its metabolite carboxy-THC in suspected impaired driving cases increased significantly relative to the pre-legalization period
 (Couper & Peterson, 2014)
How Does Cannabis Impact Driver Behaviour?
Findings from Previous Simulation Studies

• **Compensatory Behaviour:**
 – Drive at a slower speed
 (e.g., Hartman et al., 2016; Ronen et al., 2008, 2010)
 – Take fewer risks (e.g., larger headway, attempting fewer passes, requiring wider gaps in traffic before attempting to pass)
 (e.g., Dott, 1972; Ellingstad et al., 1973)

• **Psychomotor Disturbance:**
 – Increased reaction time
 (Liguori et al., 1998; Sexton et al., 2000)

• **Driving Skills Deficits:**
 – Reduced lane control
 (e.g., Lenné et al., 2010; Papafotiou et al., 2005; Ronen et al., 2008)
 – Decline in performance under divided attention
 (Anderson et al., 2010; Lenné et al., 2010; Ronen et al., 2008; Smiley et al., 1981)
Current Analysis

• **Purpose:** To examine the acute effects of a moderate dose of smoked cannabis (12.5% THC), with or without distraction, on the simulated driving behaviour of young drivers aged 19-25 years

• **Study Design:** double-blind, 2:1 randomized, placebo-controlled, mixed-design trial
Study Design

• Inclusion criteria:
 – Aged 19-25 years
 – Smoked 1-4 days per week
 – Held a valid Ontario class G or G2 license (held for at least 1 year)
 – Able to provide urine positive for THC at eligibility screening

• Exclusion Criteria
 – Regular user of psychoactive medication
 – Met Diagnostic and Statistical Manual of Mental Disorders (DSM-IV) criteria for Substance Dependence, has a severe medical or psychiatric condition, family history of schizophrenia, etc.
 – Positive for alcohol on any study day
Sample Characteristics (Mean ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Low THC</th>
<th>High THC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participants</td>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>Dose (mg)</td>
<td>N/A</td>
<td>70.5 ± 20.9</td>
<td>92.2 ± 17.0</td>
</tr>
<tr>
<td>Age</td>
<td>22.0 ± 2.2</td>
<td>22.2 ± 1.8</td>
<td>22.3 ± 2.0</td>
</tr>
<tr>
<td>Sex</td>
<td>9 females, 22 males</td>
<td>14 females, 18 males</td>
<td>5 females, 28 males</td>
</tr>
<tr>
<td>BMI</td>
<td>24.8 ± 4.3</td>
<td>23.8 ± 4.7</td>
<td>25.2 ± 4.4</td>
</tr>
<tr>
<td>Cannabis smoking frequency (days/week)</td>
<td>2.7 ± 1.1</td>
<td>2.5 ± 0.9</td>
<td>2.6 ± 0.8</td>
</tr>
<tr>
<td>DUIC in last 30 days</td>
<td>2.5 ± 2.9</td>
<td>3.0 ± 6.6</td>
<td>3.1 ± 5.5</td>
</tr>
</tbody>
</table>
Procedures

• Study consisted of 5 sessions:
 – Session 1: Eligibility
 – Session 2: Practice Day
 • Driving, cognitive/psychomotor measures, VAS, self-report questionnaires about driving behaviour and personality
 – Session 3: Drug Administration (one 12.5% THC or placebo cannabis cigarette)
 • Ad libitum smoking procedure (max. 10 mins)
 • Pre-drug and post-drug driving tasks, cognitive/psychomotor measures, VAS, vitals and blood samples
 – Session 4: 24 Hours Measures
 • Driving tasks, cognitive/psychomotor measures, VAS, vitals and blood samples
 – Session 5: 48 Hours Measures
 • Driving tasks, cognitive/psychomotor measures, VAS, vitals and blood samples
Driving Scenarios and Instructions

- Rural two-lane highway, various interactions with other vehicles.
- Instructed to drive as they normally would – measuring behaviour not skills/abilities
- Divided Attention Task: Experimenter randomly selected a three digit number and participant was instructed to count backwards by threes (e.g., 784, 781, 778...)

(Lansdown & Saunders, 2012; North & Hargreaves, 1999)
Driving Measures

• Global Performance Measures:
 – Mean speed and SDLP across full simulation
 – Collisions

• Event-Specific Measures:
 – Mean speed and SDLP in straightaway zone with no traffic
 – Mean speed approaching risky roadway hazard (e.g., driver standing next to vehicle stopped at side of road)
 – Following distance behind a slow-moving vehicle
Analyses

• These are preliminary analyses.
• Attention x Group ANOVA framework (2 X 3)
• Change scores (Pre-Drug Measure – Post-Drug Measure)
 – Positive score = decrease in the measure after smoking
 – Negative score = increase in the measure after smoking
• Looking for interaction between Attention (counting or not counting) and Group (placebo, low THC, high THC)
• To control for violations of sphericity, a Greenhouse-Geisser correction was applied.
Results

• No significant Attention x Group interaction effect for:
 – Number of collisions
 – Mean speed approaching a risky hazard
 – Following distance behind a slow-moving vehicle

• However...
Attention x Group $F(2.00, 92.00) = 2.91, p = .06$
Attention x Group $F(2.00, 92.00) = 2.55$, $p = .084$
Attention x Group $F(2.00,92.00) = 2.30$, $p = .106$
Attention x Group $F(2.00, 92.00) = 6.68, \ p = .002$
Discussion

• Dose-related effects of cannabis on driver behaviour may be dependent on attention/cognitive load.
 – Dividing attention resulted in the High THC group becoming more extreme in their behaviour and setting themselves apart from Placebo and Low THC groups (SDLP).
 – Dividing attention also resulted in the Low THC group behaving more like the High THC group (Mean speed).

• Drug effects on speed and lane control appeared to be more more visible under one attention condition than another (usually divided attention).
Implications

• Compensatory behaviour when driving has been identified as an argument for why cannabis users are safer drivers when using.

• HOWEVER:

 – Predictability is an important component to a safe roadway environment.

 – When one road user’s behaviour deviates from the expected norm, anxiety, stress, and anger are induced in other road users. (Wickens et al., 2005, 2013)

 – Unpredictable actions on the roadway can increase the risk of sudden and unsafe manoeuvres by other drivers (e.g., sudden braking, quick lane changes). (Aarts & van Shagen, 2006)
Limitations

• Driver simulation may not accurately reflect real-world driving.
 – However, a recent study found that simulated driving and on-road driving were comparable after consumption of oral THC, at least for measures of lane weaving (Veldstra, Bosker, de Waard, Ramaekers, & Brookhuis, 2015)

• High degree of variability of blood THC concentrations in the active groups.
 – A failure to see significant group differences on some measures may be due to low THC levels being achieved in the active drug group.
 • However, this was largely mitigated by the decision to split the active group into a Low and High THC group.
Future Directions

• Cannabis + Alcohol
• Dosage effects
• Tolerance effects
• Methods cannabis administration (smoking, ingestion, vaporized)
• Synthetic cannabinoids
• Detection of cannabis in oral fluid, sweat, breath, etc.
• Evaluation of the public health impact of cannabis legalization
This research was supported by a grant from the Canadian Institutes of Health Research.

Christine.Wickens@camh.ca