PRE-CRASH PATH DETERMINATION USING STABILITY CONTROL DATA

Provincial Constable Amir Agha-Razi, P.Eng
Ontario Provincial Police (O.P.P.)
Objectives

- To determine the path of a vehicle prior to the crash without utilizing road evidence

- To verify the intrusion path and determine exact time and location where the vehicle crossed the centerline
Requirements

- At least one vehicle with Event Data Recorder (EDR) is required to obtain:
 - Vehicle Velocity
 - Electronic Stability Control Data
- Area of Impact
- Scaled scene diagram
How does it work?

- Use Speed of the vehicle over 0.1 second intervals
- Translate ESC data to lateral and longitudinal “movement” every 0.1 second
- Assemble the points to form a curve for desired length of time
- Project the plotted path on the roadway using area of impact as reference
- Adjust for road geometry
- Verify movement along a curve using steering data if available
“Movement”

- Requires:
 - Object to travel from point A to point B
 - Travel the distance between A and B at a velocity during a time interval

BASICALLY, VELOCITY VECTOR WITH DIRECTION AND MAGNITUDE
<table>
<thead>
<tr>
<th>Times (sec)</th>
<th>Steering Wheel Angle (degrees)</th>
<th>Stability Control Lateral Acceleration (g)</th>
<th>Stability Control Longitudinal Acceleration (g)</th>
<th>Stability Control Yaw Rate (deg/sec)</th>
<th>Stability Control Roll Rate (deg/sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-5.0</td>
<td>5.0</td>
<td>-0.085</td>
<td>-0.069</td>
<td>-0.37</td>
<td>0.62</td>
</tr>
<tr>
<td>-4.9</td>
<td>3.7</td>
<td>-0.066</td>
<td>-0.049</td>
<td>-0.12</td>
<td>0.25</td>
</tr>
<tr>
<td>-4.8</td>
<td>4.2</td>
<td>-0.062</td>
<td>-0.09</td>
<td>-1.0</td>
<td>-0.25</td>
</tr>
</tbody>
</table>
Stability Control Yaw Rate (deg/sec)

• Represents the angular velocity (ω) around the vertical axis of the vehicle

• Rate of change in the heading (deg/sec)
Stability Control Yaw Rate (deg/sec)
Stability Control Yaw Rate (deg/sec)

1. \(\frac{v \Delta t}{\theta} = r \)
2. \(\sin \theta \times r = \sin \beta \times d \)
3. \(\beta = 90 - \alpha \)
4. \(\theta = 2 \alpha \) or \(\alpha = \frac{\theta}{2} \)
5. \(2 \sin \alpha \times r = d \)
6. \(d = 2 \sin \alpha \times \frac{v \Delta t}{\theta} \)
7. \(d = 2 \sin \alpha \times \frac{v \Delta t}{2 \alpha} \)
8. \(d = \sin \alpha \times \frac{v \Delta t}{\alpha} \)
X and Y

\[x = d \cos \alpha \]
\[y = d \sin \alpha \]
\[d = \sin \alpha \left(\frac{v \Delta t}{\alpha} \right) \]

Where:
\(\alpha = \) heading change (deg)
\(v = \) instantaneous velocity (m/s)
\(\Delta t = \) time period (s)
Crash Test

- Low speed, head-on collision
- Encroachment of one vehicle into path of another
- Comparison between EDR data analysis, road evidence and data obtained from onboard data recorders
Test Location

- City of Kingston, Ontario
- Fire Department training facility
- 2 lanes, 3.85 meters each
- Slight curve to north west
Test Vehicles

2008 Chevrolet Uplander

1998 Volkswagen Jetta
Instrumentation

- Stock EDR
- CAN BUS data logger
- Delphi OBDII harness
- Two 3D accelerometers
- Positioning/tracking system
 - 12 satellite GPS
 - 6 satellite GLONASS
Wheelbase = 287 cm
Overall length = 485 cm
Overall width = 183 cm
Weight distribution 55/44
<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>N</th>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>S</th>
<th>T</th>
<th>U</th>
<th>V</th>
<th>W</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>44.2634354</td>
<td>-76.51699056</td>
<td>40.55</td>
<td>30.44</td>
<td>0.78</td>
<td>1.36</td>
<td>0.92</td>
<td>1.36</td>
<td>10.11</td>
<td>40.38</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>44.2634356</td>
<td>-76.51698303</td>
<td>41.91</td>
<td>30.45</td>
<td>0.50</td>
<td>1.36</td>
<td>0.60</td>
<td>1.36</td>
<td>10.70</td>
<td>41.74</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>44.26343621</td>
<td>-76.51698303</td>
<td>43.27</td>
<td>30.44</td>
<td>0.41</td>
<td>1.36</td>
<td>0.49</td>
<td>1.36</td>
<td>11.19</td>
<td>43.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>44.2634735</td>
<td>-76.5169754</td>
<td>44.63</td>
<td>30.50</td>
<td>0.47</td>
<td>1.36</td>
<td>0.56</td>
<td>1.36</td>
<td>11.75</td>
<td>44.47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>44.2634811</td>
<td>-76.51695777</td>
<td>45.99</td>
<td>30.48</td>
<td>0.27</td>
<td>1.36</td>
<td>0.33</td>
<td>1.36</td>
<td>12.08</td>
<td>45.83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>44.2634826</td>
<td>-76.51695014</td>
<td>47.35</td>
<td>30.37</td>
<td>-0.27</td>
<td>1.36</td>
<td>-0.33</td>
<td>1.36</td>
<td>11.75</td>
<td>47.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>44.263504</td>
<td>-76.51695251</td>
<td>48.72</td>
<td>30.61</td>
<td>-0.78</td>
<td>1.36</td>
<td>-0.92</td>
<td>1.36</td>
<td>10.83</td>
<td>48.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>44.2635193</td>
<td>-76.51695251</td>
<td>50.08</td>
<td>30.44</td>
<td>-0.96</td>
<td>1.37</td>
<td>-1.17</td>
<td>1.37</td>
<td>9.67</td>
<td>49.92</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>44.2635307</td>
<td>-76.51694489</td>
<td>51.44</td>
<td>30.54</td>
<td>-0.98</td>
<td>1.36</td>
<td>-1.16</td>
<td>1.36</td>
<td>8.51</td>
<td>51.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>44.2635384</td>
<td>-76.51693726</td>
<td>52.81</td>
<td>30.38</td>
<td>-0.96</td>
<td>1.37</td>
<td>-1.14</td>
<td>1.37</td>
<td>7.36</td>
<td>52.64</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>44.2635458</td>
<td>-76.51692953</td>
<td>54.17</td>
<td>30.65</td>
<td>-1.14</td>
<td>1.36</td>
<td>-1.36</td>
<td>1.36</td>
<td>6.01</td>
<td>54.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>44.2635613</td>
<td>-76.51692953</td>
<td>55.53</td>
<td>30.20</td>
<td>-1.50</td>
<td>1.37</td>
<td>-1.55</td>
<td>1.37</td>
<td>4.46</td>
<td>55.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>44.2635765</td>
<td>-76.5169022</td>
<td>56.86</td>
<td>29.44</td>
<td>-1.19</td>
<td>1.35</td>
<td>-1.40</td>
<td>1.35</td>
<td>3.05</td>
<td>56.72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>44.263588</td>
<td>-76.51691457</td>
<td>58.14</td>
<td>27.70</td>
<td>-1.07</td>
<td>1.32</td>
<td>-1.23</td>
<td>1.32</td>
<td>1.83</td>
<td>58.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>44.2635956</td>
<td>-76.51690574</td>
<td>59.33</td>
<td>25.56</td>
<td>-1.21</td>
<td>1.24</td>
<td>-1.30</td>
<td>1.24</td>
<td>0.52</td>
<td>59.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>44.2636032</td>
<td>-76.51690574</td>
<td>60.45</td>
<td>24.27</td>
<td>-1.65</td>
<td>1.14</td>
<td>-1.63</td>
<td>1.14</td>
<td>-1.10</td>
<td>60.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>44.2636108</td>
<td>-76.51699911</td>
<td>61.49</td>
<td>22.62</td>
<td>-0.53</td>
<td>1.08</td>
<td>-0.59</td>
<td>1.08</td>
<td>-0.70</td>
<td>61.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>44.2636108</td>
<td>-76.51699911</td>
<td>62.50</td>
<td>22.62</td>
<td>-10.35</td>
<td>1.01</td>
<td>-9.11</td>
<td>1.01</td>
<td>-16.21</td>
<td>62.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>44.2636223</td>
<td>-76.51689911</td>
<td>63.50</td>
<td>12.95</td>
<td>-12.74</td>
<td>1.01</td>
<td>-11.20</td>
<td>1.00</td>
<td>-27.41</td>
<td>63.51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Amir: LAT, LONG WHERE GPS PHASE CENTRE CROSSES THE CENTRE LINE - SEE GPS/TRACK MAP.

LOCATION OF CM RELATIVE TO GPS PHASE CENTRE - SEE SLIDES.
Results of calculated position and data obtained from instruments are in good agreement - within 5 cm both laterally and longitudinally.

For calculations and complete results visit https://www.yaworks.ca
Summary

- Obtain pre-crash path using stability control data
- Draw a scaled diagram of the scene
- Identify the area of impact (this will be your reference point)
- Place end of the calculated path (t = 0) at centermass/location of the EDR of the vehicle at first contact
- Evaluate the following scenarios
 1. Place the beginning of the path (t = -5) on the centerline
 2. Place the beginning of the path (t = -5) on the right edge of the roadway
- Use this method as a tool to compliment your analysis and calculations!
Vehicle was travelling on the centerline prior to encroachment

Vehicle crossed the centerline between point A and point B

Vehicle was travelling on the edge of the road prior to encroachment
QUESTIONS?
Special Thanks to:

Provincial Constable Chris Prent - Collision Reconstructionist
OPP East Region Highway Safety Division

Brain Monk - Senior Collision Investigator
Transport Canada

Melanie Jones - Chief Training Officer
Kingston Fire and Rescue

Rogers Towing and Recovery

Carroll Towing and Recovery