Driver Behaviour & Automated Vehicles

Robyn Robertson, M.C.A.
President & CEO
Traffic Injury Research Foundation
CARSP Annual Conference
Toronto, ON, June 19th, 2017
Overview

> Background
> Methodology
> Knowledge and attitudes
> Behaviour
 > technology acceptance
 > trust in automation
 > behavioural adaption
> Conclusions
Background: Automation forecast

- **Fully Automated**: Monitoring of the system not required. Driver does not need to be able to take over the driving task. Example: Highway driving up to 130 km/h.
- **Highly Automated**: Monitoring of the system not required. Driver needs to be able to take over the driving task with lead time. Example: Stop-and-go (highway).
- **Partially Automated**: Monitoring of the system required. Driver needs to be able to take over the driving task at any moment. Example: Stop-and-go up to 30 km/h.
Methodology

> Random, representative sample of 2,662 Canadians stratified by region:
 » valid licence
 » driven in past 30 days

> Demographics:
 » males (53.0%) & females (47.0%)
 » age range of 16 to 93 years
 » 95% CI, ±1.9% (margin of error)

> Four focus groups (drivers and non-drivers).
Questionnaire

> Two types of self-driving vehicles explored:
 > limited self-driving vehicles (LSDVs); and,
 > fully self-driving vehicles (FSDVs).

> Driver knowledge, attitudes, practices/behaviour (KAP).

> Features of driver behaviour:
 > technology acceptance in relation to perceived ease of use and perceived usefulness;
 > trust in automation; and,
 > behavioural adaptation.
Driver KAP

> Familiar with AV technology: 63%.
> Familiar with SDV technology: 39%.
> Enjoys driving: 69%.
 » Increased by age, if male, and drove longer distances.
> Think SDVs will be very relaxing: 22%
> Think SDVs will be very stressful: 41%.
Driver KAP

Driver would use LSDVs and FSDVs if available today.

- **LSDVs**
 - Strongly agree: 23%
 - Somewhat to strongly disagree: 69%
 - Don't know: 9%

- **FSDVs**
 - Strongly agree: 17%
 - Somewhat to strongly disagree: 75%
 - Don't know: 8%
Driver KAP

Who drivers think SDVs should protect in an unavoidable collision. [Differences significant (p<.01).]

- Vehicle occupants: 63%
- More people over fewer: 59%
- Bystanders: 54%
Technology acceptance: Ease of use

Believe SDVs would be too easy to use.

<table>
<thead>
<tr>
<th></th>
<th>Percent strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>LSDVs would be easy to use</td>
<td>30</td>
</tr>
<tr>
<td>Current knowledge sufficient to operate LSDV</td>
<td>38</td>
</tr>
<tr>
<td>FSDVs would be easy to use</td>
<td>40</td>
</tr>
<tr>
<td>Current knowledge sufficient to operate FSDV</td>
<td>36</td>
</tr>
</tbody>
</table>
Technology acceptance: Usefulness

Usefulness of SDVs in terms of driving.

- SDVs will make me a better driver: 16%
- SDVs will reduce travel time: 17%
- Would commute with SDV if could program to return home: 23%
Technology acceptance: Usefulness

Percent of commuters who would switch to SDVs.

<table>
<thead>
<tr>
<th>Vehicle</th>
<th>Public transportation</th>
<th>Bicycle / walk</th>
<th>Car pool</th>
<th>Taxi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary means of commuting</td>
<td>84%</td>
<td>8%</td>
<td>7%</td>
<td>1%</td>
</tr>
<tr>
<td>20%</td>
<td>33%</td>
<td>15%</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
Technology acceptance: Usefulness

Focus groups.

> Benefits:
 » run errands;
 » vehicle would not sit idle;
 » greater independence/mobility for non-drivers.

> Concerns:
 » increased congestion and pollution;
 » reduced opportunities for human interactions;
 » job loss for professional drivers.

“Could [SDVs] be legally imposed on dangerous drivers?”
Trust in automation

SDV safety.

» Would feel safe using a vehicle:
 » LSDV (28%) vs FSDV (21%).

» Driver characteristics:
 » trust decreased as drivers aged.
 » trust increased if male and higher education levels.

“I want a full day’s notice.”
“I want vehicle to pull over.”

» Only 31% think warning systems will provide enough notice.
Trust in automation

SDV performance.

Think LSDVs will perform better than respondent in certain situations.
Behavioural adaptation

> Drivers did not think they would have to pay attention to the driving environment when using SDVs:

 » 16% strongly agreed

> Characteristics of drivers who thought this:

 » decreased as drivers aged; and,

 » increased if male and if drove greater distances.
Behavioural adaptation

Activities drivers reported they were very likely to engage in while using LSDVs.
Behavioural adaptation

What drivers reported currently doing versus what they think they will do using LSDVs.

<table>
<thead>
<tr>
<th>Behaviour</th>
<th>Currently do this</th>
<th>Would do this using LSDV</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continue to watch road</td>
<td>--</td>
<td>77%</td>
<td>--</td>
</tr>
<tr>
<td>Drive tired or fatigued</td>
<td>5%</td>
<td>24%</td>
<td>19%*</td>
</tr>
<tr>
<td>Non-driving activity / distracted</td>
<td>4%</td>
<td>17%</td>
<td>13%*</td>
</tr>
<tr>
<td>Sleep or nap</td>
<td>--</td>
<td>10%</td>
<td>--</td>
</tr>
<tr>
<td>Set vehicle to drive over speed limit</td>
<td>8%</td>
<td>9%</td>
<td>1%</td>
</tr>
<tr>
<td>Drink and drive</td>
<td>3%</td>
<td>9%</td>
<td>6%*</td>
</tr>
</tbody>
</table>

*Difference significant p<0.001
Behavioural adaptation

Percent very likely to disengage LSDV in order to drive faster or run a red light.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Drive faster</th>
<th>Run red light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good road and weather conditions</td>
<td>35</td>
<td>13</td>
</tr>
<tr>
<td>Driver familiar with the roads</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Late for appointment</td>
<td>31</td>
<td>13</td>
</tr>
<tr>
<td>Poor road and weather conditions</td>
<td>21</td>
<td>14</td>
</tr>
</tbody>
</table>
“I may need one or two lessons to use SDVs.”
“Drivers will adapt over time.”

“I will not use [SDVs] unless there is an override feature.”

“I would take over if [the LSDV] was not driving in my style.”
“I won’t use [LSDVs] if the car is not doing what I want.”
Key findings

> Driver awareness and trust of SDVs is very low whereas non-drivers are more trusting.
> Expectation to not have to pay attention.
> Expectation of lots of warning or that SDV will pull over.
> Expectation SDV will continue to protect occupants.
> Expectation to use in highest-risk driving situations, but will disengage if not their style.
> Drivers will not use vehicles without override feature.
> Concerns about negative outcomes: family interaction, city planning, public transportation and environment.
Good news/bad news

> **Still time to shape public perceptions and expectations with education.**

> **Early vs late adopters:**

» Drivers who are male, have greater education and drive longer distances are more likely to use and to trust SDVs.

» Drivers who are male and drive longer distances are more likely to negatively adapt their driving behaviour.

» Older drivers are less likely to use or trust SDVs; most able to afford and reap benefits.
Policy implications

> Education is essential to prepare drivers!

 » Misconceptions exist regarding role of driver attention and response time to warnings.

 » Technology limitations are under-estimated.

> Early adopters must know how to properly use technology.

> The ability to ‘turn off’ technology will have important implications for safety.

> Expectation that occupants will be protected in an unavoidable collision.
Conclusions

> Some important measures that speak to the behavioural challenges:

» 4
» 7.2
» 68
How drivers say they will use self-driving vehicles

The Traffic Injury Research Foundation surveyed more than 2,500 Canadian drivers about Self-Driving Vehicles (SDVs).

Safety concerns
Here’s what drivers had to say: A majority of drivers are concerned about the proven safety of SDVs and will wait to see how these vehicles perform in real world conditions before using one.

1 in 3 drivers (33%) would feel safe driving on SDV.

1 in 2 drivers (50%) would not use a limited self-driving vehicle today if it were available.

Perception
Misconceptions about the capabilities of SDVs negatively influence driver behavior:

1 in 4 Canadians do not think they would need to pay attention to driving.

1 in 5 drivers believe an SDV can perform better than them in an emergency or bad weather.

Anticipated Driving Habits
Drivers anticipate their driving habits will become less safe in an SDV.

Drivers would turn off the self-driving feature if the state of driving does not match their preferences.

Drivers would pay less attention to traffic rules on the road.

Drivers would drive faster.

Drivers would drive distracted.

Drivers would use the phone on the vehicle.

Drivers would drive impaired.

Get the facts

SDVs will require drivers to continue take over driving in complex road conditions when vehicle’s sensor-processing information from sensors.

SDVs cannot currently perform consistently in high-risk driving conditions when drivers are needed to use them.

SDVs can only function on roads that are precisely mapped using specialized SDV technology which is more detailed than regular GPS.

SDVs are not yet able to drive in snow or rain, poor road conditions, or constructive roadways.

Visit brainonboard.ca to learn more.

>TIRF: Dr. Ward Vanlaar, Dr. Marisela Hing

Sponsored by Toyota Canada Foundation
Stay informed! Connect with us!

http://www.tirf.ca
tirf@tirf.ca

https://www.facebook.com/tirfcanada
@tirfcanada

http://www.linkedin.com/company/traffic-injury-research-foundation-tirf