Exploring Spatial Patterns of Pedestrian Injury in Toronto, Canada

Emily Grisé
MA Candidate
Department of Geography
May 29, 2015
Authors

Emily Grisé, BES
University of Toronto, Mississauga

Dr. Ron Buliung, PhD
University of Toronto, Mississauga

Dr. Linda Rothman, BScOT, MHSc, PhD
York University

Dr. Andrew Howard, MD, FRCSC, MSc
The Hospital for Sick Children
Study Area

- Toronto has the largest population in Canada (approximately 2.6 million in 2011)
- Pedestrian’s account for 52% of all fatalities and 11% of all injuries from motor vehicle collisions\(^1\)

Figure source: Toronto Public Health, 2012
Study Area

Census Tract Boundaries 2006

Classification
- Downtown
- Inner Suburbs

Pre Amalgamation Toronto
- Toronto
- East York
- Etobicoke
- North York
- Scarborough
- York
Study Area
Research Objectives

i. Exploration of pedestrian motor-vehicle collisions (PMVCs) and injury by age and severity

ii. Detection of spatial clusters to identify areas with higher rates of PMVCs and injury events
Vulnerable Pedestrians

Children (0 – 14 years)
- Road traffic injury is the single largest cause of YLL (17%) in children and youth in Canada, specifically pedestrian injury accounts for 25% of total injuries²

Seniors (65 years and older)
- In Ontario in 2010, seniors accounted for a remarkably large share of pedestrian fatalities despite their representation in the population³
Data

- Weekday PMVCs occurring between January 1, 2000 to December 31, 2011
- Motor Vehicle Collision Reports filed by Toronto Police Services
- Injury Severity:
 - i. All PMVCs
 - ii. ‘Severe’ injury: major and fatal injury

Figure Source: City of Toronto, Transportation Services
Indirect Standardized Rates

- Why census tracts?
 1. Generally homogenous environment and urban design features
 2. Weekday collisions are likely to occur close to home in the CT in which a child lives, while for seniors PMVCs tend to occur on regular trips, generally occurring close to home

- Calculated standardized (i) collision and (ii) morbidity ratios
Cluster Analysis

- Standardized collision/morbidity ratios
- Spatial Empirical Bayes Rate Smoothing
- Local Moran’s I Significance and Cluster Maps
- Outlier Analysis
RESULTS
Children

Local Moran’s I results for children’s standardized collision ratios
Local Moran’s I results for children’s standardized morbidity ratios
Seniors

Local Moran’s I results of senior’s standardized collision ratios
Seniors

Local Moran’s I results of senior’s standardized morbidity ratios
DISCUSSION
Policy Implications

- Intervention planning and implementation must acknowledge spatial differences in PMVCs and injury for children and seniors
- Age-based guidance of interventions for the built environment
Conclusions

- Examining injury events by level of severity reveals a shift in the intensity away from the downtown core towards the inner suburbs of Toronto
- Additional attention, on the policy and planning front, is needed for pedestrian safety in the inner suburbs
Thank You

Thanks to the University of Toronto’s Graduate Expansion Fund
References

